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This research was for the fundamental understanding and theoretical design of novel nanostructured 
semiconductor materials with a potential impact in the areas of thermoelectrics, solar energy, and the role of 
impurities and embedded nanoparticles. The most challenging phase of the theoretical research was attacked so as to 
help understand the underlying fundamental electronic structures, find the key mechanism, and finally suggest 
design principles for desirable thermoelectric and solar energy materials. This involves developing new insights via 
theoretical calculations for interfaces, nanostructures, and defect structures including important refinements for 
electronic structures such as screened exchange (sX)-LDA and model-GW for band gap and band offset problems, 
optical properties such as dielectric functions and second harmonic susceptibilities, phonon dispersions of guest and 
host materials including thermal conductivity with the linear response approach, and transport properties including 
electrical conductivity and Seebeck coefficients using our newly developed transport codes. Specific 
materials/properties to be investigated include thermoelectrics (notably PbTe and SnTe as host materials) and 
transport, optical, and work functions of photovoltaic materials and transparent conducting oxides. 

Electronic structure and volume effect on thermoelectric transport in p-type 
Bi and Sb tellurides 

The development of highly efficient thermoelectric (TE) materials is important for 
refrigeration and energy generation and storage technologies. The efficiency of TE materials is 
represented by the figure of merit, ZT=SlaT/ (Ke+K/.), where S is the Seebeck coefficient, a is the 
electrical conductivity, and K« and KJ, are the electronic and lattice thermal conductivities, 
respectively. Thus, a higher ZT can be obtained by decreasing the denominator (smaller K* and/or 
Kz,) or by increasing the numerator (larger S and/or a. Although the thermoelectric materials have 
been extensively studied for the last decade, there are only a few theoretical simulations of their 
transport properties. 
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Bi2Te3 alloys with peak ZT~ 1.0 are well-known conventional materials for thermoelectric 
applications near room temperature. In the experiments for Bi2Te3 and Sb2Te3-based alloys, the 
doping of bismuth and antimony atoms in Sb2Te3 and Bi2Te3, respectively, influences the 
thermoelectric properties, where it is generally known that the antisite defects are the origin of 
the current carriers. In addition, recently, the highest ZT value of ~2.4 was reported at 300 K in 
/7-type Bi2Te3/Sb2Te3 superlattices. Even though the phonon-blocking/electron-transmitting 
mechanism in the superlattice was suggested, to our knowledge, the influence of the thickness 
and volume of each layer for the electronic transport coefficients of S and a is not well 
understood. In this work, we first investigate the temperature-dependent behavior of the 
thermoelectric property in bulk Bi2Te3, (Bio.sSbo.s) 2Te3, and Sb2Te3; discuss the role of carrier 
concentration, band gap, and electronic structure; and compare the results to experiments. 
Second, we suggest that the dopant size effect by Bi and Sb cation doping can be one of the 
origins to influence the thermoelectric property, even though both Bi and Sb have the same 
number of valence electrons, and it is demonstrated that 5* in Sb2Te3 increases due to the volume 
expansion associated with the doping of larger Bi atoms. 

For the study, we considered the rhombohedral structure for Bi2Te3 and Sb2Te3, and the 
hexagonal supercell structure for (Bio.sSbo.s) 2Te3 where each Bi (Sb) atom has four and two 
nearest neighbors of Sb (Bi) and Bi (Sb), respectively, in the hexagonal plane. We used 
experimental lattice constants for Bi2Te3 (aBf=4.386 A, CBT=30.497 A) and Sb2Te3 (asr 
=4.264 A, csr=30.458 A), and average lattice constants for _Bi0.5Sb0. (Bio.sSbo.s) 2Te3. The 
internal atomic positions in (Bio.sSbo.s) 2Te3, Bi2Te3, and Sb2Te3 were optimized via force and 
total-energy minimization. Experimentally, the Sb-doped Bi2Te3 shows />-type character; 
therefore, we discuss only p-type Bi and Sb tellurides for comparing with experimental results. 
The electronic structure was calculated using the highly precise all-electron full-potential 
linearized augmented plane-wave (FLAPW) method in the localdensity approximation (LDA) 
with spin-orbit coupling (SOC) included by a second variational method. Further, the screened- 
exchange LDA (sX-LDA) method is used for obtaining correct band gaps at zero temperature. 
The sXLDA method is known to provide a better description of the excited states and band gaps; 
in particular, good agreement with the experimental band gap (0.162 eV) was obtained for 
Bi2Te3 (0.154 eV). To determine the Seebeck coefficient and the electrical conductivity, we 
employed the distribution function given by Boltzmann's equation in the constant relaxation- 
time approximation. 

Thermoelectric transport properties (Seebeck coefficient, S, and electrical conductivity, 
CT) of p-type Bi and Sb tellurides are investigated using a first-principles all-electron density- 
functional approach. We demonstrate that the carrier concentration, band gap, and lattice 
constants have an important influence on the temperature behavior of S and that the volume 
expansion by 5.5% in Sb2Te3 results in an increase in S by 33 uV/K at 300 K. We argue that in 
addition to the electronic structure characteristics, the volume also affects the value of S and 
hence should be considered as an origin of the experimental observations that S can be enhanced 
by doping Sb2Te3 with Bi (which has a larger ionic size) in Sb sites or by the deposition of thick 
Bi2Te3 layers alternating with thinner Sb2Te3 layers in a superlattice, Bi2Te3 / Sb2Te3. We 
showed that the optimal carrier concentration for the best power factor of Bi2Te3 and Sb2Te3 is 
approximately 101 cm-3. 

In summary, using a first-principles density-functional approach, we have calculated the 
transport coefficients for pure and mixed Bi and Sb tellurides. We showed that the carrier 
concentration, electronic structure, and volume have an important influence on the temperature 



dependent S, such as the peak location and the slope. We found that the optimal carrier 
concentration for the best power factor of Bi2Te3 and St>2Te3 is approximately 1019 cm-3. This 
may give a good insight to fabricate more efficient thermoelectric materials and devices. 

"Electronic structure and volume effect on thermoelectric transport in^-type Bi and Sb tellurides", (M. S. 
Park, J. H. Song, J. E. Medvedeva, M. Y. Kim, I. G. Kim, A. J. Freeman), Physical Review B, 81,155211 
(2010) 

Electronic structure and transport properties of doped PbSe 

PbTe-based materials, including nanostructures, alloys, and also the 2% Tl-doped bulk 
materials, have shown good properties in thermoelectric applications. Compared with PbTe, 
another lead chalcogenide, PbSe has several advantages with respect to thermoelectric 
application. First of all, selenium is much more abundant than tellurium, which can reduce the 
cost of related devices. Second, bulk PbSe has a smaller lattice thermal conductivity than PbTe, 
which is beneficial for a larger figure of merit. Third, bulk PbSe has a higher melting 
temperature than PbTe (1082<>C versus 924"C), which means a possibly better thermal stability. 
In this study, we investigate the electronic structures and transport properties of PbSe doped with 
a serial of impurities including cation-site substitutional impurities (Na, K, Rb; Mg, Ca, Sr; Cu, 
Ag, Au; Zn, Cd, Hg; Ga, In, Tl; Ge, Sn; As, Sb, Bi) and anion-site substitutional impurities (P, 
As, Sb; O, S, Te), using first-principles band structure calculations. We calculate the difference 
between the DOS of the doped samples and the pure host sample to find a local increase near the 
Fermi level. The chemical trends and the nature of impurity states are well described using the 
linear combination of atomic orbitals (LCAO) picture. Within the framework of Boltzmann 
theory, using the constant relaxation time approximation and rigid band model, the transport 
properties and the power factor for the semiconducting doped samples are calculated. We find 
that (1) changes in the DOS of PbSe due to different impurities are very similar with those that 
happen to PbTe; (2) there is a significant enhancement of the power factor in cation-site Au- and 
As-doped PbSe; (3) with the impurity concentration in this work (3.125%), Tl doping does not 
improve the thermoelectric properties of PbSe; (4) the HMA method is not applicable for 
PbSe, so it is not universal. 

Understanding the electronic structure and transport properties of doped PbSe for its 
thermoelectric applications is an urgent need. Using a first-principles approach, we first explored 
the band structures of PbSe doped with a series of impurities, including cation-site substitutional 
impurities (Na, K, Rb; Mg, Ca, Sr; Cu, Ag, Au; Zn, Cd, Hg; Ga, In, Tl; Ge, Sn; As, Sb, Bi) and 
anion-site substitutional impurities (P, As, Sb; O, S, Te). Then we calculated the density of states 
(DOS) difference between the doped samples and pure host sample, which is a useful quantity to 
recognize the possibility of improving transport properties. The exhibited chemical trends and 
the nature of the impurity states are well explained with a simplified linear combination of 
atomic orbitals (LCAO) picture. Finally, we calculated the transport properties of these doped 
systems within the framework of Boltzmann theory and constant relaxation time approximation. 
Typical competing behavior between the electrical conductivity and Seebeck coefficient is 
exhibited, and a significant enhancement of thermoelectric power factor is found in the cation- 
site Au-dopedp-type samples, and cation-site As-doped n-type samples. 



In summary, we calculated the band structures, density of states (DOS), change in DOS, 
Seebeck coefficients, electrical conductivities, and power factors of PbSe doped with various 
impurities. From our results and previous investigations, we conclude the following: 

(i) The effects of the same impurity in PbSe and PbTe are very similar. 
(ii) Impurity-/? or -d orbitals are much more efficient than impurity-.? orbitals to resonate with 

or to perturb the host bands. They are also more efficient to produce a local increase of the DOS. 
The former impurities include As, Sb, and Bi doped on the cation site, P, As, and Sb doped on 
the anion site, and Cu, Ag, and Au doped on the cation site. The latter impurities include Zn, Cd, 
and Hg doped on the cation site. 

(iii) The impurity states near £> in PbSe doped with Ga, In, and Tl are host states perturbed 
by the deep impurity-s states. We did not find an enhancement of the power factor in PbSe:Tl. 

(iv) We did not find an enhancement of the power factor in PbSe:0. The highly mismatched 
isoelectronic doping method is not a good method to enhance the power factor of PbSe. PbSe is a 
kind of "5e" compound because Pb and Se have an average of five valence electrons, whereas 
ZnSe is a kind of "4e" compound. We believe that the highly mismatched isoelectronic doping 
method may be good for the Ae compounds but not for the 5e compounds. 

(v) PbSe:Au is a good candidate for p-type thermoelectric materials because of resonance 
states and a local increase of the DOS, compared with PbSe:Na. 

(vi) PbSe:Asc is very likely to be a good candidate for n-type thermoelectric materials 
because of resonance states and a local increase of the DOS, compared with PbSe:I; further, 
PbSe:Zn and PbSe:Cd may be good candidates for w-type thermoelectric materials because of an 
additional energy pocket. But for all the n-type samples, more delicate investigations are needed 
because of the neglect of spin-orbit coupling in this study. 

"Electronic structure and transport properties of doped PbSe", (H. Peng, J. H. Song, M. G. Kanatzidis, A. 
J. Freeman), Physical Review B, 84,125207 (2011) 
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